
            

Chapter 7

Introduction to finite fields

This chapter provides an introduction to several kinds of abstract algebraic structures, partic-
ularly groups, fields, and polynomials. Our primary interest is in finite fields, i.e., fields with
a finite number of elements (also called Galois fields). In the next chapter, finite fields will be
used to develop Reed-Solomon (RS) codes, the most useful class of algebraic codes. Groups and
polynomials provide the requisite background to understand finite fields.

A field is more than just a set of elements: it is a set of elements under two operations,
called addition and multiplication, along with a set of properties governing these operations.
The addition and multiplication operations also imply inverse operations called subtraction and
division. The reader is presumably familiar with several examples of fields, such as the real field
R, the complex field C, the field of rational numbers Q, and the binary field F2.

7.1 Summary

In this section we briefly summarize the results of this chapter. The main body of the chapter
will be devoted to defining and explaining these concepts, and to proofs of these results.

For each prime p and positive integer m ≥ 1, there exists a finite field Fpm with pm elements,
and there exists no finite field with q elements if q is not a prime power. Any two fields with pm

elements are isomorphic.

The integers modulo p form a prime field Fp under mod-p addition and multiplication. The
polynomials Fp[x] over Fp modulo an irreducible polynomial g(x) ∈ Fp[x] of degree m form a
finite field with pm elements under mod-g(x) addition and multiplication. For every prime p,
there exists at least one irreducible polynomial g(x) ∈ Fp[x] of each positive degree m ≥ 1, so
all finite fields may be constructed in this way.

Under addition, Fpm is isomorphic to the vector space (Fp)m. Under multiplication, the nonzero
elements of Fpm form a cyclic group {1, α, . . . , αpm−2} generated by a primitive element α ∈ Fpm .

The elements of Fpm are the pm roots of the polynomial xp
m − x ∈ Fp[x]. The polynomial

xp
m − x is the product of all monic irreducible polynomials g(x) ∈ Fp[x] such that deg g(x)

divides m. The roots of a monic irreducible polynomial g(x) ∈ Fp[x] form a cyclotomic coset of
deg g(x) elements of Fpm which is closed under the operation of raising to the pth power.

For every n that divides m, Fpm contains a subfield with pn elements.
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For further reading on this beautiful subject, see [E. R. Berlekamp, Algebraic Coding The-
ory, Aegean Press, 1984], [R. Lidl and H. Niederreiter, Introduction to Finite Fields and their
Applications, Cambridge University Press, 1986], [R. J. McEliece, Finite Fields for Computer
Scientists and Engineers, Kluwer, 1987], [M. R. Schroeder, Number Theory in Science and Com-
munication, Springer, 1986], or indeed any book on finite fields or algebraic coding theory.

7.2 The integers

We begin with a brief review of the familiar factorization properties of the set Z of integers. We
will use these properties immediately in our discussion of cyclic groups and their subgroups and
of prime fields. Moreover, we will model our later discussion of the factorization properties of
polynomials on the discussion here.

7.2.1 Definitions

An integer n is said to be a divisor of an integer i if i is an integer multiple of n; i.e., i = qn for
some integer q. Thus all integers are trivially divisors of 0.

The integers that have integer inverses, namely ±1, are called the units of Z. If u is a unit
and n is a divisor of i, then un is a divisor of i and n is a divisor of ui. Thus the factorization
of an integer can only be unique up to a unit u, and ui has the same divisors as i. We therefore
consider only factorizations of positive integers into products of positive integers.

Every nonzero integer i is divisible by 1 and i; these divisors are called trivial. An integer n
is said to be a factor of an integer i if n is positive and a nontrivial divisor of i. For example, 1
has no nontrivial divisors and thus no factors.

A positive integer greater than 1 that has no nontrivial divisors is called a prime integer.

7.2.2 Mod-n arithmetic

Given a positive integer n, every integer i may be uniquely expressed as i = qn + r for some
integer remainder r in the interval 0 ≤ r ≤ n − 1 and some integer quotient q. This may be
proved by the Euclidean division algorithm, which if i ≥ n just subtracts n from i repeatedly
until the remainder lies in the desired interval.

The remainder r, denoted by r = i mod n, is the more important part of this expression. The
set of possible mod-n remainders is the set of n integers Rn = {0, 1, . . . , n− 1}. Evidently n is
a divisor of i if and only if i mod n = 0.

Remainder arithmetic using the mod-n remainder set Rn is called “mod-n arithmetic.” The
rules for mod-n arithmetic follow from the rules for integer arithmetic as follows. Let r = i mod n
and s = j mod n; then, as integers, r = i− qn and s = j − tn for some quotients q and t. Then

r + s = i+ j − (q + t)n;

rs = ij − (qj + ti)n+ qtn2.

Hence (r + s) mod n = (i + j) mod n and rs mod n = ij mod n; i.e., the mod-n remainder of
the sum or product of two integers is equal to the mod-n remainder of the sum or product of
their mod-n remainders, as integers.
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The mod-n addition and multiplication rules are therefore defined as follows:

r ⊕ s = (r + s) mod n;

r ∗ s = (rs) mod n,

where “r” and “s” denote elements of the remainder set Rn on the left and the corresponding
ordinary integers on the right. This makes mod-n arithmetic consistent with ordinary integer
arithmetic in the sense expressed in the previous paragraph.

7.2.3 Unique factorization

Given a positive integer i, we may factor i into a unique product of prime factors by simply
factoring out primes no greater than i until we arrive at the quotient 1, as the reader has known
since grade school. For the time being, we will take this unique factorization property as given.
A proof will be given as an exercise after we prove the corresponding property for polynomials.

7.3 Groups

We now introduce groups.

Definition 7.1 A group is a set of elements G = {a, b, c, . . .} and an operation ⊕ for which the
following axioms hold:

(a) Closure: for any a ∈ G, b ∈ G, the element a⊕ b is in G.

(b) Associative law: for any a, b, c ∈ G, (a⊕ b)⊕ c = a⊕ (b⊕ c).
(c) Identity: There is an identity element 0 in G for which a⊕ 0 = 0⊕ a = a for all a ∈ G.

(d) Inverse: For each a ∈ G, there is an inverse (−a) such that a⊕ (−a) = 0.

In general it is not necessary that a ⊕ b = b ⊕ a. A group G for which a ⊕ b = b ⊕ a for all
a, b ∈ G is called abelian or commutative. In these notes all groups will be abelian.

In view of the associative law, we may write (a⊕b)⊕c as a⊕b⊕c without ambiguity. Moreover,
in an abelian group the elements a, b, c may be written in any order.

By axiom (c), every group must have at least one element, namely the identity element 0. A
group with only one element is called a trivial group.

Frequently, the operation in a group is called multiplication, usually represented either by ∗
or juxtaposition. The identity is then denoted by 1 (or e), and the inverse of a by a−1. Additive
notation is generally used only for abelian groups, whereas multiplicative notation is used for
both abelian and nonabelian groups. Since we consider only abelian groups, we will use additive
notation when the nature of the group is unspecified.

As an example, the set of integers Z with the usual addition operation + forms an abelian
group. Also, the real field R forms an additive abelian group under ordinary addition in which
the identity is 0 and the inverse of a is −a. More interestingly, as the reader should verify,
the nonzero elements of R form a multiplicative abelian group under ordinary multiplication, in
which the identity is 1 and the inverse of a is a−1 = 1/a. We will see that every field has similar
additive and multiplicative group properties.
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This example illustrates that the group structure (i.e., the properties stemming from the group
operation ⊕) may reflect only part of the structure of the given set of elements; e.g., the additive
group structure of R takes no account of the fact that real numbers may also be multiplied, and
the multiplicative group structure of R−{0} takes no account of the fact that real numbers may
also be added.

We abbreviate b ⊕ (−a) for any a, b ∈ G by b − a and regard “−” as an additional opera-
tion implicitly defined by the axioms. In an additive group, “−” is called subtraction; in a
multiplicative group, “−” is called division and denoted by / or ÷.

Because of the inverse operation, cancellation is always permissible; i.e., if x⊕ a = y ⊕ a, we
can add −a to both sides, showing that x = y. Similarly, one can move terms from one side of
an equation to the other; i.e., x⊕ a = y implies x = y − a.
Exercise 1 (Inverses and cancellation)

(a) Verify the following set of implications for arbitrary elements a, b of a group G which is
not necessarily abelian:

b⊕ a = 0 ⇒ b = −a ⇒ a⊕ b = 0 ⇒ a = −b ⇒ b⊕ a = 0.

(b) Use this result to show that the inverse is unique, i.e., that a ⊕ b = 0 ⇒ b = −a, and
that the inverse also works on the left, i.e., b ⊕ a = 0 ⇒ b = −a. Note that this shows that
cancellation is permitted on either the right or the left.

(c) Show that the identity element is unique, i.e., that for a, b ∈ G, a ⊕ b = a ⇒ b = 0 and
b⊕ a = a ⇒ b = 0.

If G has a finite number of elements, G = {a1, a2, . . . , an}, then G is said to be finite and
|G| = n is said to be the order of G. The group operation ⊕ may then be specified by an n× n
“addition table” whose entry at row i, column j is ai ⊕ aj . The cancellation property implies
that if aj 6= ak, then ai⊕aj 6= ai⊕ak. This means that all elements in any row i of the addition
table are distinct; i.e., each row contains each element of G exactly once. Similarly, each column
contains each element of G exactly once. Thus the group axioms restrict the group operation ⊕
more than might be immediately evident.

7.3.1 Alternative group axioms

The property that a “row of the addition table,” namely a⊕G = {a⊕ b | b ∈ G} is just the set
of elements of G in a different order (i.e., a permutation of G) is a fundamental property of any
group G. We will now show that this permutation property may be taken as one of the group
axioms. Subsequently we will use this property to prove that certain sets are groups.

Theorem 7.1 (Alternative group axioms) Let G = {a, b, c, . . .} be a set of elements on
which an operation ⊕ is defined. Then G is a group under the operation ⊕ if and only if the
following axioms hold:

(a′) Permutation property: For each a ∈ G, a⊕G = {a⊕ b | b ∈ G} is a permutation of G.

(b) Associative law: for any a, b, c ∈ G, (a⊕ b)⊕ c = a⊕ (b⊕ c).

(c) Identity: There is an identity element 0 in G for which a⊕ 0 = 0⊕ a = a for all a ∈ G.
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Proof. We need to show that, given that the associative law (b) and the identity axiom (c) hold,
the permutation property (a′) is equivalent to closure (a) plus the inverse axiom (d).

((a) + (d) ⇒ (a′)) If G is a group under ⊕, then by the closure property every element a ⊕ b
is in G. Moreover, the fact that a ∈ G has an inverse −a ∈ G implies that every element b ∈ G
may be written as a ⊕ (−a ⊕ b) ∈ a ⊕ G, so every element of G is in a ⊕ G. Finally, from the
cancellation property, a ⊕ b = a ⊕ c implies b = c. Thus the correspondence between G and
a⊕G defined by b↔ a⊕ b is one-to-one; i.e., a permutation.

((a′) ⇒ (a) + (d)) Conversely, if a ⊕ G is a permutation of G for every a ∈ G, then (a) the
closure property holds; i.e., a ⊕ b ∈ G for all a, b ∈ G; (b) since 0 ∈ a ⊕ G, there must exist a
unique b ∈ G such that a⊕ b = 0, so a has a unique inverse −a = b under ⊕. Thus G is a group
under ⊕.

The properties of “rows” a⊕G hold equally for “columns” G⊕ a, even when G is nonabelian.

For example, the set R∗ of nonzero elements of the real field R form an abelian group under
real multiplication, because real multiplication is associative and commutative with identity 1,
and αR∗ is a permutation of R∗ for any α ∈ R∗.
Exercise 2 (Invertible subsets).

(a) Let H be a set of elements on which an associative operation ⊕ is defined with identity 0,
and let G be the subset of elements h ∈ H which have unique inverses −h such that h⊕−h = 0.
Show that G is a group under ⊕.

(b) Show that the nonzero elements of the complex field form a group under complex multi-
plication.

(c) Show that the set of invertible n× n real matrices forms a (nonabelian) group under real
matrix multiplication.

(d) What are the invertible elements of Z under multiplication? Do they form a group?

7.3.2 Finite cyclic groups

An important example of a finite abelian group is the set of remainders Rn = {0, 1, . . . , n − 1}
under mod-n addition, where n is any given positive integer. This group is called “the integers
mod n,” and is denoted by Zn. Note that Z1 is the trivial group {0}.
Exercise 3 (small cyclic groups). Write down the addition tables for Z2,Z3 and Z4. Verify

that each group element appears precisely once in each row and column of each table.

A finite group G of order n is called cyclic if it is isomorphic to Zn. By “isomorphic,” we mean
that there is a one-to-one correspondence G↔ Zn that transforms the addition table of G into
the addition table of Zn, and vice versa. Since Zn is abelian, any cyclic group is abelian.

For example, let G consist of the two elements {±1}, which form a group under multiplication
with “addition table”

× +1 −1

+1 +1 −1

−1 −1 +1

G is evidently isomorphic to Z2 under the one-to-one correspondence {+1↔ 0,−1↔ 1}.
A finite group G of order n is called a single-generator group if it contains a particular element

g ∈ G, called the generator, such that each element of G can be expressed as the sum, g⊕· · ·⊕g,
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of some number of repetitions of g. Thus each element of G appears in the sequence of elements
{g, g ⊕ g, g ⊕ g ⊕ g, . . .}. We denote such an i-fold sum by ig, where i is a positive integer and
g is a group element; i.e.,

1g = g, 2g = g ⊕ g, . . . , ig = g ⊕ · · · ⊕ g︸ ︷︷ ︸
i terms

, . . .

Theorem 7.2 (Finite cyclic groups) A finite group G of order n is cyclic if and only if it
is a single-generator group with generator g and with elements {0g, 1g, 2g, . . . , (n − 1)g}. G is
then isomorphic to Zn under the one-to-one correspondence ig ↔ i.

Proof. (⇐) Suppose that G is a single-generator group with elements {g, 2g, 3g, . . .}. Since G
includes the identity element 0, we must have ig = 0 for some positive integer i. Let n be the
smallest such integer; thus ng = 0 and ig 6= 0 for 1 ≤ i ≤ n − 1. Adding the sum of j g’s for
any j > 0 to each side of ig 6= 0 results in (i+ j)g 6= jg. Thus the elements {1g, 2g, . . . , ng = 0}
must all be different.

We can also add jg to both sides of the equality ng = 0, yielding (j + n)g = jg for any j > 0.
Thus for each i > n, ig is equal to some earlier element in the sequence, namely (i − n)g. The
elements {1g, 2g, . . . , ng = 0} therefore constitute all of the distinct elements in G, and the order
of G is |G| = n. If we define 0g to be the identity 0, then G = {0g = 0, 1g, . . . , (n− 1)g}.

Finally, we show that addition in G follows the rules of mod-n addition. Since ng = 0, we
also have 2ng = 0, 3ng = 0, etc. Any integer i may be uniquely written as i = qn + r, where
the remainder r = i mod n is in Rn = {0, 1, . . . , n− 1}; thus ig = (qn)g + rg = rg, where rg =
(i mod n)g is one of the elements of G. Thus the addition rule of G is ig⊕ jg = (i+ j mod n)g,
for 0 ≤ i, j < n. In other words, the addition table of G is the same as that of Zn under the
one-to-one correspondence ig ∈ G↔ i ∈ Zn, so G and Zn are isomorphic; i.e., G is cyclic.

(⇒) Conversely, suppose that G is cyclic; i.e., G is isomorphic to Zn under some 1-1 correspon-
dence G↔ Zn. Denote the element of G that corresponds to i ∈ Zn by ig, for 0 ≤ i < n. Then,
by the isomorphism, the addition rule of G must be ig ⊕ jg = (i+ j mod n)g, for 0 ≤ i, j < n.
In particular, 0g must be the identity of G, and 2g = 1g⊕ 1g, 3g = 1g⊕ 2g = 1g⊕ 1g⊕ 1g, and
so forth; thus G is a single-generator group with generator 1g.

Figure 1 illustrates the cyclic structure of G that arises from the relation (j + n)g = jg.

r0 = ng = 2ng = · · ·

rg = (n+ 1)g = · · ·

r 2g = (n+ 2)g = · · ·

r
3g = (n+ 3)g = · · ·r

4g = (n+ 4)g = · · ·

r
r
r(n− 1)g =
(2n− 1)g = · · ·

Figure 1. The cyclic structure of a cyclic group: the sequence {1g, 2g, . . .} goes from the group
element g up to ng = 0, then returns to g and continues to cycle.
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In multiplicative notation, the elements of a cyclic group G of order n with generator g are
denoted by {g0 = 1, g1, g2, . . . , gn−1}, the multiplication rule is gi∗gj = g(i+j mod n), the identity
is g0 = 1, and the inverse of gi 6= 1 is gn−i. For example, if ω = e2πi/n, the set {1, ω, ω2, . . . , ωn−1}
of complex nth roots of unity is a cyclic group under complex multiplication, isomorphic to Zn.

7.3.3 Subgroups

A subgroup S of a group G is a subset of the elements of the group that satisfies the group
axioms under the group operation of G. Thus if a, b ∈ S, then a ⊕ b ∈ S and −a ∈ S. A
subgroup S must thus include the identity element of G and the inverse of each element in S.

For example, the set of integers Z is a subgroup of the additive group of R.

If G is abelian, then S must be abelian; however, S may be abelian even if G is nonabelian.

For any g ∈ G, we define the coset (translate) S ⊕ g = {s⊕ g | s ∈ S}. The zero coset S ⊕ 0 is
thus equal to S itself; moreover, by Theorem 7.1, S ⊕ g = S whenever g ∈ S. The elements of
any coset S ⊕ g are distinct, because s⊕ g = s′ ⊕ g implies s = s′; thus every coset has size |S|.

The following simple lemma has far-reaching implications:

Lemma 7.3 (Cosets) Two cosets S⊕g and S⊕h are: (a) the same, if g−h ∈ S; (b) disjoint,
if g − h /∈ S.

Proof. If g − h ∈ S, then the elements of S ⊕ h include (g − h) ⊕ h = g and therefore all
elements of S ⊕ g, so S ⊕ g ⊆ S ⊕ h; similarly S ⊕ h ⊆ S ⊕ g.

On the other hand, if S ⊕ g and S ⊕ h have any element in common, say s⊕ g = s′ ⊕ h, then
g − h = s′ − s ∈ S; thus, g − h /∈ S implies that S ⊕ g and S ⊕ h are disjoint.

It follows that the distinct cosets S ⊕ g of a subgroup S ⊆ G form a disjoint partition of G,
since every element g ∈ G lies in some coset, namely S ⊕ g. If G is finite, G is therefore the
disjoint union of a finite number |C| of cosets of S ⊆ G, each of size |S|; therefore |G| = |C||S|.
This proves Lagrange’s theorem:

Theorem 7.4 (Lagrange) If S is a subgroup of a finite group G, then |S| divides |G|.

Some important corollaries of Lagrange’s theorem are as follows.

First, suppose that a finite group G has prime order, |G| = p. Then the only possible orders of
a subgroup are 1 and p. A subgroup of order 1 must be the trivial subgroup {0}, since a⊕a = a
implies a = 0. A subgroup of order p must be G itself, since it must include every element of G.
Therefore the only subgroups of a group G of prime order are the trivial subgroups {0} and G.

Consider the single-generator subgroup {g, g⊕g, . . .} generated by any nonzero element g ∈ G.
It has order at least 2, and therefore its order must be p; i.e., any nonzero element of G
generates G. This implies that G is cyclic and isomorphic to Zp under any correspondence
ig ∈ G↔ i ∈ Zp, g 6= 0.

In summary:

Corollary 7.5 (Groups of prime order) Let G be a group of prime order p. Then the only
subgroups of G are {0} and G. G is cyclic, and may be generated by any of its nonzero elements.
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For example, Z5 may be generated by any of its nonzero elements, as follows:

Z5 = {1, 2, 3, 4, 5 = 0} = {2, 4, 1, 3, 5 = 0} = {3, 1, 4, 2, 5 = 0} = {4, 3, 2, 1, 5 = 0}.

Second, let S be a subgroup of the group (Z2)
n of all 2n binary n-tuples under componentwise

mod-2 addition. By Lagrange’s theorem, S must have order 2k for some k in the range 0 ≤ k ≤ n.
Since S is closed under multiplication by 0 or 1, S is in fact an (n, k) binary linear block code
(BLBC); conversely, a BLBC is an additive subgroup of (Z2)

n of order 2k. Thus we could have
defined a BLBC simply by its group property, rather than as a vector space as in Chapter 5.

Corollary 7.6 (BLBC = subgroup of (Z2)
n) A subset S of (Z2)

n of size 2k is an (n, k)
binary linear block code if and only if S is a subgroup of (Z2)

n.

As we saw in Chapter 5, the most important properties of a BLBC follow from its group
structure, rather than its vector space structure, and we could have carried through most of our
development using group properties only. In particular, using the same greedy algorithm as in
Chapter 5, we could find a set of k generators {gi, 1 ≤ i ≤ k} for S as a group; i.e., such that
S is the set of all 2k possible additive combinations of the generators.

7.4 Fields

Definition 7.2 A field is a set F of at least two elements, with two operations ⊕ and ∗, for
which the following axioms are satisfied:

• The set F forms an abelian group (whose identity is called 0) under the operation ⊕.

• The set F∗ = F− {0} = {a ∈ F, a 6= 0} forms an abelian group (whose identity is called 1)
under the operation ∗.

• Distributive law: For all a, b, c ∈ F, (a⊕ b) ∗ c = (a ∗ c)⊕ (b ∗ c).

The operation ⊕ is called addition (and often denoted by +), and the operation ∗ is called
multiplication (and often denoted by juxtaposition). As in ordinary arithmetic, we often omit the
parentheses around a product of elements, using the convention “multiplication before addition;”
e.g., we interpret a⊕ b ∗ c as a⊕ (b ∗ c).

The reader may verify that R, C, Q and F2 each form a field according to this definition under
conventional addition and multiplication.

Exercise 4. Show that for any element a ∈ F, a ∗ 0 = 0.

7.4.1 Prime fields

A fundamental example of a finite (Galois) field is the set Fp of mod-p remainders, where p is
a given prime number. Here, as in Zp, the set of elements is Rp = {0, 1, · · · , p − 1}, and the
operation ⊕ is mod-p addition. The multiplicative operation ∗ is mod-p multiplication; i.e.,
multiply integers as usual and then take the remainder after division by p.
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Theorem 7.7 (Prime fields) The set Rn = {0, 1, · · · , n− 1} forms a field under mod-n addi-
tion and multiplication if and only if n is a prime number p.

Proof. We have already seen that the elements of Rn form an abelian group under addition
modulo n, namely the cyclic group Zn.

In Zn, the associative, commutative and distributive properties of addition and multiplication
modulo n follow from the corresponding properties of ordinary addition and multiplication. Zn
has a multiplicative identity, namely 1.

If n is not a prime, then n = ab for some integers a, b in the range 1 < a, b < n. The product
a ∗ b is therefore equal to 0, modulo n; thus Zn − {0} is not closed under mod-n multiplication,
which implies that Zn is not a field.

On the other hand, suppose that n is equal to a prime p. To see that the nonzero elements of Zp
form a group under multiplication, we show that they have the permutation property. By unique
factorization, the product of two nonzero integers a, b < p cannot equal 0 mod p. Therefore the
nonzero elements of Zp are closed under multiplication mod p. Also, for a, b, c 6= 0 and b 6= c we
have a(b− c) mod p 6= 0. Thus ab 6= ac mod p, which implies a ∗ b 6= a ∗ c. Consequently there
are no zeroes or repetitions in the set of p− 1 elements {a ∗1, a ∗2, . . . , a ∗ (p− 1)}, which means
they must be a permutation of the nonzero elements of Zp.

This prime field with p elements will be denoted by Fp. We will shortly show that Fp is
essentially the only field with p elements.

7.4.2 The prime subfield of a finite field, and prime field uniqueness

A subfield G of a field F is a subset of the field that is itself a field under the operations of F.
For example, the real field R is a subfield of the complex field C. We now show that every finite
field F has a subfield that is isomorphic to a prime field Fp.

Let F be a finite field with q = |F| elements. By the field axioms, F has an additive identity 0
and a multiplicative identity 1.

Consider the single-generator subgroup of the additive group of F that is generated by 1,
namely S(1) = {1, 1 ⊕ 1, . . .}. Let n = |S(1)|. By the finite cyclic groups theorem, S(1) is
isomorphic to Zn = {0, 1, 2, . . . , n− 1} under the correspondence i1 ∈ S(1) ⊆ F↔ i ∈ Zn. The
elements of S(1) are called the integers of F.

By the distributive law in F, the product i ∗ j (in F) of two nonzero elements in S(1) is simply
the sum of ij ones, which must be the element of S(1) corresponding to ij mod n. Thus the
multiplication rule of F must reduce to mod-n multiplication in S(1). It then follows from the
prime fields theorem that n must be equal to a prime p in order that S(1) be a field.

In summary:

Theorem 7.8 (Prime subfields) The integers of any finite field F form a subfield isomorphic
to a prime field Fp under the correspondence 1⊕ · · · ⊕ 1︸ ︷︷ ︸

i terms

∈ F↔ i ∈ Fp.

The prime p is called the characteristic of F. Since the p-fold sum of the identity 1 with itself
is 0, the p-fold sum of every field element β ∈ F with itself is 0: pβ = 0.
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As an additive group, S(1) is a subgroup of the additive group of F. Therefore, by Lagrange’s
theorem, p divides q. If q is actually a prime p, then |S(1)| must equal 1 or p; but a field cannot
have only one element. Thus if |F| = p, then F must be isomorphic to Fp:

Corollary 7.9 (Prime field uniqueness) Every field F with a prime number p of elements
is isomorphic to Fp under the correspondence 1⊕ · · · ⊕ 1︸ ︷︷ ︸

i terms

∈ F↔ i ∈ Fp.

In view of this elementary isomorphism, we will denote any field with a prime number p of
elements by Fp.

7.5 Polynomials

We now consider polynomials over Fp, namely polynomials whose coefficients lie in Fp and
for which polynomial addition and multiplication is performed in Fp. We will see that the
factorization properties of polynomials are similar to those of the integers, and that the analogue
to mod-n arithmetic is arithmetic modulo a polynomial f(x).

A nonzero polynomial f(x) of degree m over a field F is an expression of the form

f(x) = f0 + f1x+ f2x
2 + · · ·+ fmx

m,

where fi ∈ F, 0 ≤ i ≤ m, and fm 6= 0. We say that deg f(x) = m. The symbol x represents
an indeterminate (or “placeholder”), not an element of F; i.e., two polynomials are different if
and only if their coefficients are different1. The nonzero polynomials of degree 0 are simply the
nonzero field elements f0 ∈ F. There is also a special zero polynomial f(x) = 0 whose degree
is defined by convention as deg 0 = −∞; we will explain the reason for this convention shortly.
The set of all polynomials over F in an indeterminate x is denoted by F[x].

The rules for adding, subtracting or multiplying polynomials are the same over a general field
F as over the real field R, except that coefficient operations are in F. In particular, addition and
subtraction are performed componentwise. For multiplication, the coefficients of a polynomial
product f(x) = h(x)g(x) are determined by convolution:

fi =

i∑

j=0

hjgi−j .

If two nonzero polynomials are multiplied, then their degrees add; i.e., deg(h(x)g(x)) =
deg h(x) + deg g(x). The convention deg 0 = −∞ ensures that this formula continues to hold
when h(x) or g(x) is the zero polynomial.

The set F[x] has many of the properties of a field. It is evidently an abelian group under
addition whose identity is the zero polynomial 0 ∈ F[x]. It is closed under multiplication, which
is both associative and commutative and which distributes over addition. It has a multiplicative
identity 1 ∈ F[x], and the cancellation law holds.

1Over the real field R, a polynomial f(x) is sometimes regarded as a function f : R → R. This alternative
viewpoint makes little difference in the real case, since two polynomials over R are different if and only if the
corresponding polynomial functions are different. However, over finite fields it is important to maintain the
distinction. For example, over F2 the polynomial functions x and x2 both map 0→ 0, 1→ 1, yet the polynomials
x and x2 are different.
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However, in general we cannot divide evenly by a nonzero polynomial, since a polynomial f(x)
with deg f(x) > 0 has no multiplicative inverse. Therefore F[x] is a ring,2 not a field, like the
ring of integers Z. We now develop a series of properties of F[x] that resemble those of Z.

7.5.1 Definitions

A polynomial g(x) is said to be a divisor of an polynomial f(x) if f(x) is a polynomial multiple
of g(x); i.e., f(x) = q(x)g(x) for some polynomial q(x). Thus all polynomials are trivially
divisors of the zero polynomial 0.

The polynomials that have polynomial inverses are the nonzero degree-0 polynomials β ∈ F∗ =
F− {0}. These are called the units of F[x]. If u(x) is a unit polynomial and g(x) is a divisor of
f(x), then u(x)g(x) is a divisor of f(x) and g(x) is a divisor of u(x)f(x). Thus the factorization
of a polynomial can be unique only up to a unit polynomial u(x), and u(x)f(x) has the same
divisors as f(x).

A monic polynomial is a nonzero polynomial f(x) of degree m with high-order coefficient fm
equal to 1; i.e., f(x) = f0 + f1x + f2x

2 + · · · + xm. Every nonzero polynomial g(x) may be
written as the product g(x) = gmf(x) of a monic polynomial f(x) of the same degree with a unit
polynomial u(x) = gm, and the product of two monic polynomials is monic. We may therefore
consider only factorizations of monic polynomials into products of monic polynomials.

Every nonzero polynomial f(x) is divisible by 1 and f(x); these divisors are called trivial. A
polynomial g(x) is said to be a factor of a polynomial f(x) if g(x) is monic and a nontrivial
divisor of f(x). Thus the degree of any factor g(x) of f(x) satisfies 1 ≤ deg g(x) < deg f(x).

A polynomial g(x) of degree 1 or more that has no factors is called an irreducible polynomial,
and a monic irreducible polynomial is called a prime polynomial. Our goal now is to show that
every monic polynomial has a unique factorization into prime polynomial factors.

7.5.2 Mod-g(x) arithmetic

Given a monic polynomial g(x) of degree m, every polynomial f(x) may be expressed as f(x) =
q(x)g(x)+r(x) for some polynomial remainder r(x) such that deg r(x) < m and some polynomial
quotient q(x). This may be proved by the Euclidean long division algorithm of high school, with
component operations in F; i.e., divide g(x) into f(x) by long division, high-degree terms first,
stopping when the degree of the remainder is less than that of g(x). The following exercise
shows that the resulting quotient q(x) and remainder r(x) are unique.

Exercise 6 (Euclidean division algorithm).

(a) For the set F[x] of polynomials over any field F, show that the distributive law holds:
(f1(x) + f2(x))h(x) = f1(x)h(x) + f2(x)h(x).

(b) Use the distributive law to show that for any given f(x) and g(x) in F[x], there is a unique
q(x) and r(x) with deg r(x) < deg g(x) such that f(x) = q(x)g(x) + r(x).

2The axioms of a ring are similar to those for a field, except that there is no multiplicative inverse. For example,
Z and Zn (for n not a prime) are rings. In fact, Z and F[x] are integer domains, which are the nicest kind of
rings. An integer domain is a ring with commutative multiplication and a multiplicative identity 1 such that the
nonzero elements are closed under multiplication.

Exercise 5. Show that an integer domain with a finite number of elements must be a finite field. [Hint:
consider its cyclic multiplicative subgroups.]
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The remainder polynomial r(x), denoted by r(x) = f(x) mod g(x), is the more important
part of this decomposition. The set of all possible remainder polynomials is the set RF,m =
{r0 + r1x + · · · + rm−1x

m−1 | rj ∈ F, 0 ≤ j ≤ m − 1}, whose size is |RF,m| = |F|m. Evidently
g(x) is a divisor of f(x) if and only if f(x) mod g(x) = 0.

Remainder arithmetic using the remainder set RF,m is called “mod-g(x) arithmetic.” The
rules for mod-g(x) arithmetic follow from the rules for polynomial arithmetic as follows. Let
r(x) = f(x) mod g(x) and s(x) = h(x) mod g(x); then, as polynomials, r(x) = f(x)− q(x)g(x)
and s(x) = h(x)− t(x)g(x) for some quotient polynomials q(x) and t(x). Then

f(x) + h(x) = r(x) + s(x)− (q(x) + t(x))g(x);

f(x)h(x) = r(x)s(x)− (q(x)s(x) + t(x)r(x))g(x) + q(x)t(x)g2(x).

Hence (f(x) + h(x)) mod g(x) = (r(x) + s(x)) mod g(x) and f(x)h(x) mod g(x) = r(x)s(x)
mod g(x). In other words, the mod-g(x) remainder of the sum or product of two polynomials is
equal to the mod-g(x) remainder of the sum or product of their mod-g(x) remainders.

The mod-g(x) addition and multiplication rules are therefore defined as follows:

r(x)⊕ s(x) = (r(x) + s(x)) mod g(x);

r(x) ∗ s(x) = (r(x)s(x)) mod g(x),

where “r(x)” and “s(x)” denote elements of the remainder set RF,m on the left and the corre-
sponding ordinary polynomials on the right. This makes mod-g(x) arithmetic consistent with
ordinary polynomial arithmetic in the sense of the previous paragraph.

Note that the mod-g(x) addition rule is just componentwise addition of coefficients in F. In this
sense the additive groups of RF,m and of the vector space Fm of m-tuples over F are isomorphic.

7.5.3 Unique factorization

By definition, every monic polynomial f(x) is either irreducible or can be factored into a product
of monic polynomial factors, each of lower degree. In turn, if a factor is not irreducible, it can
be factored further. Since factor degrees are decreasing but bounded below by 1, we must
eventually arrive at a product of monic irreducible (prime) polynomials. The following theorem
shows that there is only one such set of prime polynomial factors, regardless of the order in
which the polynomial is factored.

Theorem 7.10 (Unique factorization of polynomials) Over any field F, every monic
polynomial f(x) ∈ F[x] of degree m ≥ 1 may be written in the form

f(x) =

k∏

i=1

ai(x),

where each ai(x), 1 ≤ i ≤ k, is a prime polynomial in F[x]. This factorization is unique, up to
the order of the factors.

Proof. We have already shown that f(x) may be factored in this way, so we need only prove
uniqueness. Thus assume hypothetically that the theorem is false and let m be the smallest
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degree such that there exists a degree-m monic polynomial f(x) with more than one such
factorization,

f(x) = a1(x) · · · ak(x) = b1(x) · · · bj(x); j, k ≥ 1, (7.1)

where a1(x), . . . , ak(x) and b1(x), . . . , bj(x) are prime polynomials. We will show that this implies
a polynomial f ′(x) with degree less than m with non-unique factorization, and this contradiction
will prove the theorem. Now a1(x) cannot appear on the right side of (7.1), else it could be
factored out for an immediate contradiction. Similarly, b1(x) cannot appear on the left. Without
loss of generality, assume deg b1(x) ≤ deg a1(x). By the Euclidean division algorithm, a1(x) =
q(x)b1(x) + r(x). Since a1(x) is irreducible, r(x) 6= 0 and 0 ≤ deg r(x) < deg b1(x) ≤ deg a1(x).
Thus r(x) has a prime factorization r(x) = βr1(x) · · · rn(x), where β is the high-order coefficient
of r(x), and b1(x) is not a divisor of any of the ri(x), since it has greater degree. Substituting
into (7.1), we have

(q(x)b1(x) + βr1(x) · · · rn(x))a2(x) · · · ak(x) = b1(x) · · · bj(x),

or, defining f ′(x) = r1(x) · · · rn(x)a2(x) · · · ak(x) and rearranging terms,

f ′(x) = r1(x) · · · rn(x)a2(x) · · · ak(x) = β−1b1(x)(b2(x) · · · bj(x)− q(x)a2(x) · · · ak(x)).

Now f ′(x) is monic, because it is a product of monic polynomials; it has degree less than f(x),
since deg r(x) < deg a1(x); and it has two different factorizations, with b1(x) a factor in one but
not a divisor of any of the factors in the other; contradiction.

Exercise 7. Following this proof, prove unique factorization for the integers Z.

7.5.4 Enumerating prime polynomials

The prime polynomials in F[x] are analogous to the prime numbers in Z. One way to enumerate
the prime polynomials is to use an analogue of the sieve of Eratosthenes. For integers, this
method goes as follows: Start with a list of all integers greater than 1. The first integer on the
list is 2, which is prime. Erase all multiples of 2 (even integers). The next remaining integer
is 3, which must be the next prime. Erase all multiples of 3. The next remaining integer is 5,
which must be the next prime. Erase all multiples of 5. And so forth.

Similarly, to find the prime polynomials in F2[x], for example, first list all polynomials of degree
1 or more in F2[x] in order of degree. (Note that all nonzero polynomials in F2[x] are monic.)
No degree-1 polynomial can have a factor, so the two degree-1 polynomials, x and x + 1, are
both prime. Next, erase all degree-2 multiples of x and x+ 1, namely

x2 = x ∗ x;
x2 + x = x ∗ (x+ 1);

x2 + 1 = (x+ 1) ∗ (x+ 1)

from the list of four degree-2 polynomials. This leaves one prime degree-2 polynomial, namely
x2 + x + 1. Next, erase all degree-3 multiples of x, x + 1, and x2 + x + 1 from the list of eight
degree-3 polynomials, namely the six polynomials

x3 = x ∗ x ∗ x;
x3 + x2 = (x+ 1) ∗ x ∗ x;
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x3 + x = (x+ 1) ∗ (x+ 1) ∗ x;
x3 + x2 + x = x ∗ (x2 + x+ 1);

x3 + 1 = (x+ 1) ∗ (x2 + x+ 1);

x3 + x2 + x+ 1 = (x+ 1) ∗ (x+ 1) ∗ (x+ 1).

The remaining two polynomials, namely x3 + x2 + 1 and x3 + x+ 1, must therefore be prime.

Exercise 8. Find all prime polynomials in F2[x] of degrees 4 and 5. [Hint: There are three
prime polynomials in F2[x] of degree 4 and six of degree 5.]

Continuing in this way, we may list all prime polynomials in F2[x] up to any desired degree.
It turns out that the number N(m) of prime polynomials of F2[x] of degree m is N(m) =
2, 1, 2, 3, 6, 9, 18, 30, 56, 99, . . . for m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .. (In Section 7.9 we will give a
simpler method to compute N(m), and will show that N(m) > 0 for all m.)

A similar sieve algorithm may be used to find the prime polynomials in F[x] over any finite
field F. The algorithm starts with a listing of the monic polynomials ordered by degree, and
successively erases the multiples of lower-degree prime polynomials.

7.6 A construction of a field with pm elements

We now show how to construct a field with pm elements for any prime integer p and positive
integer m ≥ 1. Its elements will be the set RF,m of remainder polynomials of degree less than m,
and multiplication will be defined modulo an irreducible polynomial g(x) of degree m. We will
subsequently show that that every finite field is isomorphic to a finite field that is constructed
in this way.

The construction assumes the existence of a prime polynomial g(x) ∈ Fp[x] of degree m. The
proof that such a polynomial exists for all prime p and m ≥ 1 will be deferred until later. The
field that we construct will be denoted by Fg(x).

The set of elements of Fg(x) will be taken to be the mod-g(x) remainder set RFp,m = {r0 +
r1x+ · · ·+ rm−1x

m−1 | rj ∈ Fp, 0 ≤ j ≤ m− 1}, whose size is |RFp,m| = pm.

The addition and multiplication rules will be taken to be those of mod-g(x) arithmetic. We
must show that the axioms of a field are satisfied with these definitions.

The associative, commutative and distributive laws for mod-g(x) arithmetic follow from the
corresponding laws for ordinary polynomial arithmetic.

Mod-g(x) addition of two remainder polynomials in Fg(x) yields a remainder polynomial of
degree < m in Fg(x). Fg(x) evidently forms an abelian group under mod-g(x) addition. (As
already mentioned, this group is isomorphic to the additive group of (Fp)m.)

Mod-g(x) multiplication of two remainder polynomials r(x), s(x) yields the remainder polyno-
mial t(x) = r(x)s(x) mod g(x). The following exercise shows that the nonzero elements of Fg(x)

form an abelian group under mod-g(x) multiplication:

Exercise 9. Let g(x) be a prime polynomial of degreem, and let r(x), s(x), t(x) be polynomials
in Fg(x).

(a) Prove the distributive law, i.e., (r(x)+s(x))∗t(x) = r(x)∗t(x)+s(x)∗t(x). [Hint: Express
each product as a remainder using the Euclidean division algorithm.]

(b) For r(x) 6= 0, show that r(x) ∗ s(x) 6= r(x) ∗ t(x) if s(x) 6= t(x).
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(c) For r(x) 6= 0, show that as s(x) runs through all nonzero polynomials in Fg(x), the product
r(x) ∗ s(x) also runs through all nonzero polynomials in Fg(x).

(d) Using part (c) and Theorem 7.1, show that the nonzero elements of Fg(x) form an abelian
group under mod-g(x) multiplication.

Since we have verified the three field axioms, we have proved:

Theorem 7.11 (Construction of Fg(x)) If g(x) is an prime polynomial of degree m over a
prime field Fp, then the set of remainder polynomials RFp,m with mod-g(x) arithmetic forms a
finite field Fg(x) with pm elements.

Example 1. Let us construct a finite field with 22 = 4 elements using the prime degree-2
polynomial g(x) = x2 + x+ 1 ∈ F2[x].

There are four remainder polynomials mod x2 + x + 1, namely {0, 1, x, x + 1}. Addition is
componentwise mod 2. For multiplication, note that x∗x = x+1 since x2 mod (x2+x+1) = x+1.
Also x ∗ x ∗ x = x ∗ (x + 1) = 1 since x3 mod (x2 + x + 1) = 1. The three nonzero elements
{1, x, x + 1} thus form a cyclic group under mod-g(x) multiplication, which verifies the second
field axiom for this example.

The complete mod-g(x) addition and multiplication tables are as follows:

⊕ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

∗ 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

1 + x 0 x+ 1 1 x

7.7 The multiplicative group F∗q is cyclic

In this section we consider an arbitrary finite field Fq with q elements. By the second field axiom,
the set F∗q of all q − 1 nonzero elements must form a finite abelian group under multiplication.
In this section we will show that this group is actually cyclic.

We start by showing that every element of F∗q is a root of the polynomial xq−1 − 1 ∈ Fq[x].
Thus we first need to discuss roots of polynomials over arbitrary fields.

7.7.1 Roots of polynomials

Let F[x] be the set of polynomials over an arbitrary field F. If f(x) ∈ F[x] has a degree-1 factor
x− α for some α ∈ F, then α is called a root of f(x).

Since any f(x) may be uniquely expressed as f(x) = q(x)(x−α)+β for some quotient q(x) and
some β ∈ F (i.e., for some remainder r(x) = β of degree less than 1), it follows that f(α) = β.
Therefore α is a root of f(x) if and only if f(α) = 0 — i.e., if and only if α is a root of the
polynomial equation f(x) = 0.

By degree additivity, the degree of a polynomial f(x) is equal to the sum of the degrees of
its prime factors, which are unique by unique factorization. Therefore a polynomial of degree
m can have at most m degree-1 factors. This yields what is sometimes called the fundamental
theorem of algebra:



               

90 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

Theorem 7.12 (Fundamental theorem of algebra) Over any field F, a monic polynomial
f(x) ∈ F[x] of degree m can have no more than m roots in F. If it does have m roots {β1, . . . , βm},
then the unique factorization of f(x) is f(x) = (x− β1) · · · (x− βm).

Since the polynomial xn − 1 can have at most n roots in F, we have an important corollary:

Theorem 7.13 (Cyclic multiplicative subgroups) In any field F, the multiplicative group
F∗ of nonzero elements has at most one cyclic subgroup of any given order n. If such a subgroup
exists, then its elements {1, β, . . . , βn−1} satisfy

xn − 1 = (x− 1)(x− β) · · · (x− βn−1).

For example, the complex multiplicative group C∗ has precisely one cyclic subgroup of each
finite size n, consisting of the n complex nth roots of unity. The real multiplicative group R∗
has cyclic subgroups of size 1 ({1}) and 2 ({±1}), but none of any larger size.

Exercise 10. For 1 ≤ j ≤ n, the jth elementary symmetric function σj(S) of a set S of n
elements of a field F is the sum of all

(
n
j

)
products of j distinct elements of S. In particular,

σ1(S) is the sum of all elements of S, and σn(S) is the product of all elements of S.

(a) Show that if S = {1, β, . . . , βn−1} is a cyclic subgroup of F∗, then σj(S) = 0 for 1 ≤ j ≤ n−1
and σn(S) = (−1)n+1. In particular,

n−1∑

j=0

βj = 0, if n > 1;
n−1∏

j=0

βj = (−1)n+1.

Verify for S = {±1,±i} (the four complex 4th roots of unity).

(b) Prove that for any odd prime integer p,

(p− 1)! = 1 · 2 · 3 · · · (p− 1) = −1 mod p.

Verify for p = 3, 5 and 7.

7.7.2 Factoring xq − x over Fq

For any β ∈ F∗q , consider the single-generator subgroup S(β) = {1, β, β2, β3, . . .} of F∗q generated
by β. The size |S(β)| of this subgroup is called the multiplicative order of β.

By the finite cyclic groups theorem, β|S(β)| = 1, and by Lagrange’s theorem, |S(β)| must divide
|F∗q | = q − 1. It follows that βq−1 = 1 for all β ∈ F∗q .

In other words, every β ∈ F∗q is a root of the polynomial equation xq−1 = 1, or equivalently
of the polynomial xq−1 − 1 ∈ Fq[x]. By the polynomial roots theorem, xq−1 − 1 can have at
most q − 1 roots in Fq, so these are all the roots of xq−1 − 1. Thus xq−1 − 1 factors into the
product of the degree-1 polynomials x−β for all β ∈ F∗q . Moreover, since 0 ∈ Fq is a root of the
polynomial x and x(xq−1 − 1) = xq − x, the polynomial xq − x factors into the product of the
degree-1 polynomials x− β for all β ∈ Fq.

To summarize:
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Theorem 7.14 In a finite field Fq with q elements, every nonzero field element β ∈ Fq satisfies
βq−1 = 1 and has a multiplicative order |S(β)| that divides q − 1. The nonzero elements of Fq
are the q − 1 distinct roots of the polynomial xq−1 − 1 ∈ Fq[x]; i.e.,

xq−1 − 1 =
∏

β∈F∗q
(x− β). (7.2)

The elements of Fq are the q distinct roots of the polynomial xq − x ∈ Fq[x]; i.e.,

xq − x =
∏

β∈Fq
(x− β). (7.3)

Exercise 11.

(a) Verify (7.2) for the prime field F5.

(b) Verify (7.2) for the field F4 that was constructed in Example 1. [Hint: use a symbol other
than x for the indeterminate in (7.2).]

7.7.3 Every finite field has a primitive element

A primitive element of a finite field Fq is an element α whose multiplicative order |S(α)| equals
q − 1. If α is a primitive element, then the cyclic group {α, α2, . . . , αq−1 = 1} is a set of q − 1
distinct nonzero elements of Fq, which therefore must be all the nonzero elements. Thus if we
can show that Fq has at least one primitive element, then we will have shown that its nonzero
elements F∗q form a cyclic group under multiplication of size q − 1.

In order to show that every finite field Fq has at least one element of multiplicative order q−1,
we will show that there are not enough elements of lower order to exhaust F∗q .

We know that the multiplicative order d of every element of F∗q divides q−1, and that F∗q has at
most one cyclic subgroup of order d, which implies that there are at most d elements of order d.
When q− 1 does not have too many factors, this is enough to settle the question. For example,
if q − 1 = 15, then the possible multiplicative orders of elements of F∗q are the divisors 1, 3, 5
and 15 of 15; but there can be at most one element of order 1 (the multiplicative identity), 3 of
order 3, and 5 of order 5, so at least 15− 5− 3− 1 = 6 elements have order 15.

If q − 1 is highly composite, then we will need sharper arguments. For example, if q − 1 = 24,
then the possible orders are 1, 2, 3, 4, 6, 8, 12 and 24, so it seems possible at first that all of the
elements could have orders less then 24. However, notice that in a multiplicative cyclic group
of order 2, namely {β, β2 = 1}, one of the elements (1) actually has multiplicative order 1, so
only one has order 2. In a multiplicative group of order 4, namely {β, β2, β3, β4 = 1}, one of the
elements (1) has order 1, and one (β2) has order 2, so only two have order 4.

The number of elements in a cyclic group G = {β, β2, . . . , βn = 1} with n elements that have
order n is called the Euler number φ(n). By elementary number theory, βi has order n if and
only if i is relatively prime to n. More generally, the order of βi is n/ gcd(i, n), where gcd(i, n)
is the greatest common divisor of i and n; there is one cyclic subgroup of G of order d for each
divisor of n (namely S(βn/d) = {βn/d, β2n/d, . . . , βd(n/d) = 1}); and the number of elements of
order d in S(βn/d), and thus in G, is φ(d).
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For example, if n = 24, then in a cyclic group of order 24, namely {βi, 1 ≤ i ≤ 24}, there is one
element (β24 = 1) of order 1, one (β12) of order 2, two (β8, β16) of order 3, two (β6, β18) of order
4, two (β4, β20) of order 6, four (β3, β9, β15, β15) of order 8, and four (β2, β10, β14, β22) of order
12. So there must be φ(24) = 8 elements of order 24, namely β, β5, β7, β11, β13, β17, β19, β23.

Since every element of a cyclic group G with n elements has an order d that divides n, we have

n =
∑

d: d|n
φ(d). (7.4)

The notation d : d|n means the set of positive integers d, including 1 and n, that divide n.
All Euler numbers may be determined recursively from this expression. For example, φ(1) =
1, φ(2) = 2− φ(1) = 1, φ(3) = 3− φ(1) = 2, φ(4) = 4− φ(1)− φ(2) = 2, . . ..

Exercise 11. Show that φ(n) ≥ 1 for all n ≥ 1. [Hint: Find the order of the generator β of
the cyclic group G.]

Since every cyclic group of size n is isomorphic to G ∼= Zn, these results apply to every finite
cyclic group. In particular, every cyclic group G of size n has φ(n) generators that generate G,
called the primitive elements of G. G contains one cyclic subgroup of order d for each d that
divides n, and φ(d) elements of order d.

Exercise 12. Show that every subgroup of Zn is cyclic. [Hint: Let s be the smallest nonzero
element in a subgroup S ⊆ Zn, and compare S to the subgroup generated by s.]

We now conclude our proof that F∗q has at least one element of multiplicative order q − 1. By
the cyclic subgroups theorem, F∗q has at most one cyclic subgroup of each size d, and in each such
subgroup the number of elements actually of order d is the Euler number φ(d). By Lagrange’s
theorem, the multiplicative order |S(β)| of each nonzero element β ∈ F∗q divides q−1. Therefore
the number of elements of all possible orders is at most

∑

d: d|(q−1)

φ(d),

which equals q − 1 by (7.4). But since this must equal the total number of elements in F∗q ,
namely q − 1, we conclude that there must be φ(d) elements of each order d that divides q − 1.
In particular, there must be φ(q − 1) ≥ 1 (by Exercise 11) elements of order q − 1. Thus a
primitive element α of order q − 1 exists, and F∗q is cyclic. In summary:

Theorem 7.15 (F∗q is cyclic) Given any field Fq with q elements, the nonzero elements of Fq
form a multiplicative cyclic group F∗q = {α, α2, . . . , αq−1 = 1}. Consequently F∗q has φ(d) ≥ 1
elements of multiplicative order d for every d that divides q − 1, and no elements of any other
order. In particular, F∗q has φ(q − 1) ≥ 1 primitive elements.

Henceforth we will usually write the elements of a finite field Fq as {0, 1, α, α2, . . . , αq−2}, where
α denotes a primitive element. For Fg(x), denoting a field element β as a power of α rather than
as a remainder polynomial helps to avoid confusion when we consider polynomials in β.

Example 2. The prime field F5 has φ(1) = 1 element of order 1 (the element 1), φ(2) = 1
element of order 2 (namely 4 = -1), and φ(4) = 2 primitive elements of order 4 (namely, 2 and
3). We can therefore write F5 = {0, 1, 2, 22, 23}, since 22 = 4 and 23 = 3 mod 5.
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Example 3. A field F16 = {0, 1, α, . . . , α14} with 16 elements has

• φ(1) = 1 element of order 1 (the element 1);

• φ(3) = 2 elements of order 3 (α5 and α10);

• φ(5) = 4 elements of order 5 (α3, α6, α9, α12), and

• φ(15) = 8 primitive elements of order 15 (α, α2, α4, α7, α8, α11, α13, α14).

The “logarithmic” representation of the nonzero elements of Fq as distinct powers of a primitive
element α is obviously highly convenient for multiplication and division. Multiplication in Fq is
often carried out by using such a “log table” to convert a polynomial f(x) ∈ Fq to the exponent
i such that f(x) = αi, and then using an inverse “antilog table” to convert back after adding or
subtracting exponents. (Note that the zero element can be included in this scheme if we define
0 = α−∞.)

7.8 Every finite field is isomorphic to a field Fg(x)

We now wish to show that every finite field Fq is isomorphic to a field Fg(x) of the type that
we have previously constructed. In particular, this will show that the number of elements of a
finite field must be q = pm, a prime power.

The development relies on the properties of minimal polynomials, which are the factors that
appear in the unique factorization of xq − x over the prime subfield Fp of Fq.

7.8.1 Factoring xq − x into minimal polynomials over Fp

Again, consider any field Fq with q elements. We have seen in Theorem 7.14 that the polynomial
xq − x ∈ Fq[x] factors completely into q deqree-1 factors x− β ∈ Fq[x], β ∈ Fq.

We have also seen that if Fq has characteristic p, then Fq has a prime subfield Fp with p
elements. The prime subfield Fp contains the integers of Fq, which include {0,±1}. Therefore
we may regard xq − x alternatively as a polynomial in Fp[x].

By unique factorization, xq − x factors over Fp into a unique product of prime polynomials
gi(x) ∈ Fp[x]:

xq − x =
∏

i

gi(x). (7.5)

Since each coefficient of gi(x) is an element of Fp ⊆ Fq, it is also an element of Fq, so gi(x) is
also a monic polynomial in Fq[x]. We therefore have the following two factorizations of xq − x
in Fq[x]:

xq − x =
∏

β∈Fq
(x− β) =

∏

i

gi(x). (7.6)

Since the first factorization is the unique prime factorization, it follows that each monic polyno-
mial gi(x) of degree greater than 1 must be reducible over Fq, and must factor into a product
of degree-1 monic polynomials; i.e.,

gi(x) =

deg gi(x)∏

j=1

(x− βij). (7.7)
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The prime polynomials gi(x) are called the minimal polynomials of Fq. Since each β ∈ Fq
appears exactly once on the left side of (7.6), it also appears as a factor in exactly one minimal
polynomial in (7.7). Thus the elements of Fq are partitioned into disjoint sets {βi1, . . . , βik}
where k = deg gi(x), and each β ∈ Fq is a root of exactly one minimal polynomial of Fq, called
the minimal polynomial of β.

The key property of the minimal polynomial of β is the following:

Lemma 7.16 Let g(x) be the minimal polynomial of any given β ∈ Fq. Then g(x) is the monic
polynomial of least degree in Fp[x] such that g(β) = 0. Moreover, for any f(x) ∈ Fp[x], f(β) = 0
if and only if g(x) divides f(x).

Proof: Let h(x) ∈ Fp[x] be a monic polynomial of least degree such that h(β) = 0. Using
the Euclidean division algorithm, g(x) = q(x)h(x) + r(x) where deg r(x) < deg h(x). Since
h(β) = g(β) = 0, we must have r(β) = 0. By the smallest degree property of h(x), this implies
that r(x) = 0, so h(x) divides g(x). But since g(x) is irreducible, h(x) cannot have degree less
than g(x); i.e., deg h(x) = deg g(x). Moreover, since both h(x) and g(x) are monic, this implies
that h(x) = g(x). Thus g(x) is the monic polynomial of least degree in Fp[x] such that g(β) = 0.

Now let f(x) be any polynomial in Fp[x] that satisfies f(β) = 0. By Euclidean division, f(x) =
q(x)g(x) + r(x) with deg r(x) < deg g(x). Thus r(β) = f(β) = 0. Since deg r(x) < deg g(x),
r(β) = 0 if and only if r(x) = 0; i.e., if and only if g(x) divides f(x).

Example 1 (cont.). Again consider the field F4 of Example 1, whose elements we now write
as {0, 1, α, α2}, where α may be taken as x or x+ 1. This field has characteristic 2. The prime
factorization of the binary polynomial x4 − x = x4 + x ∈ F2[x] is

x4 + x = x(x+ 1)(x2 + x+ 1),

so the minimal polynomials of F4 are x, x + 1 and x2 + x + 1. The elements 0 and 1 ∈ F4 are
the roots of x and x+ 1, respectively. From (7.7), the other two elements of F4, namely α and
α2, must be roots of x2 + x+ 1 ∈ F2[x]. We verify that

x2 + x+ 1 = (x+ α)(x+ α2)

since α+ α2 = 1 and α ∗ α2 = α3 = 1.

7.8.2 Valuation maps, minimal polynomials and subfields

Given a field Fq with prime subfield Fp, we now consider evaluating a nonzero polynomial
f(x) =

∑
i fix

i ∈ Fp[x] at an element β ∈ Fq to give a value

f(β) =

deg f(x)∑

i=0

fiβ
i

in Fq, where fi is taken as an element of Fq for the purposes of this evaluation. The value of the
zero polynomial at any β is 0.
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The value f(β) depends on both the polynomial f(x) and the field element β ∈ Fq. Rather than
regarding f(β) as a function of β, as the notation suggests, we will regard f(β) as a function of
the polynomial f(x) ∈ Fp[x] for a fixed β. In other words, we consider the map mβ : Fp[x]→ Fq
that is defined by mβ(f(x)) = f(β).

The set of values mβ(Fp[x]) of this map as f(x) ranges over polynomials in Fp[x] is by definition
the subset of elements Gβ ⊆ Fq that can be expressed as linear combinations over Fp of powers of
β. We will show that Gβ forms a subfield of Fq that is isomorphic to the polynomial remainder
field Fg(x), where g(x) is the minimal polynomial of β, namely the monic polynomial of least
degree such that g(β) = 0.

We observe that the map mβ : Fp[x] → Fq preserves addition and multiplication; i.e.,
mβ(f1(x) + f2(x)) = mβ(f1(x)) + mβ(f2(x)) since both sides equal f1(β) + f2(β), and
mβ(f1(x)f2(x)) = mβ(f1(x))mβ(f2(x)) since both sides equal f1(β)f2(β).

We can now prove the desired isomorphism between the fields Fg(x) and Gβ :

Theorem 7.17 (Subfields generated by β ∈ Fq) For any β ∈ Fq, let g(x) be the minimal
polynomial of β. Then the set of all linear combinations Gβ = {f(β) =

∑
i fiβ

i, f(x) ∈ Fp[x]}
over Fp of powers of β is equal to the set {r(β), r(x) ∈ RFp,m} of values of remainder polynomials
r(x) ∈ RFp,m, and Gβ is a field which is isomorphic to the field Fg(x) under the correspondence
r(β) ∈ Gβ ↔ r(x) ∈ RFp,m.

Proof. We first verify that the correspondence mβ : RFp,m → Gβ is one-to-one (invertible).
First, if f(β) is any element ofGβ , then by Euclidean division we can write f(x) = q(x)g(x)+r(x)
where r(x) ∈ RFp,m, and then f(β) = q(β)g(β)+r(β) = r(β), so f(β) = r(β) for some remainder
polynomial r(x). Thus mβ(RFp,m) = mβ(Fp[x]) = Gβ . On the other hand, no two remainder
polynomials r(x), s(x) with degrees less than m can evaluate to the same element of Gβ , because
if r(β) = s(β), then r(x)− s(x) is a nonzero polynomial of degree less than g(x) that evaluates
to 0, contradiction.

Now, as we have already seen, mβ(r(x) + s(x)) = mβ(r(x)) + mβ(s(x)) and mβ(r(x)s(x)) =
mβ(r(x))mβ(s(x)), which verifies that this correspondence is an isomorphism.

We remark that Gβ may be viewed as the smallest subfield of Fq containing the element β,
because any subfield containing β must also contain all powers of β and all linear combinations
of powers over Fp.

7.8.3 Isomorphism theorems

We have shown that every finite field Fq contains a primitive element α. In this case, the subfield
Gα consisting of all linear combinations over Fp of powers of α must evidently be the whole field
Fq. Thus we obtain our main theorem:

Theorem 7.18 (Every finite field is isomorphic to a field Fg(x)) Every finite field Fq of
characteristic p with q elements is isomorphic to a polynomial remainder field Fg(x), where g(x)
is a prime polynomial in Fp[x] of degree m. Hence q = pm for some positive integer m.

Exercise 14. For which integers q, 1 ≤ q ≤ 12, does a finite field Fq exist?
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Finally, we wish to show that all fields with pm elements are isomorphic. The following lemma
shows that every prime polynomial g(x) of degree m (we are still assuming that there exists at
least one) is a minimal polynomial of every field with pm elements:

Lemma 7.19 Every prime polynomial g(x) ∈ Fp[x] of degree m divides xp
m − x.

Proof. If g(x) is a prime polynomial in Fp[x] of degree m, then the set RFp,m with mod-g(x)
arithmetic forms a field Fg(x) with pm elements. The remainder polynomial x ∈ RFp,m is a field
element β ∈ Fg(x). Evidently g(β) = 0, but r(β) 6= 0 if deg r(x) < m; therefore g(x) is the

minimal polynomial of β. Since βp
m−1 = 1, β is a root of xp

m−1 − 1. This implies that g(x)
divides xp

m−1 − 1, and thus also xp
m − x.

Consequently every field of size pm includes m elements whose minimal polynomial is g(x).
Therefore by the same construction as above, we can prove:

Theorem 7.20 (All finite fields of the same size are isomorphic) For any prime poly-
nomial g(x) ∈ Fp[x] of degree m, every field of pm elements is isomorphic to the polynomial
remainder field Fg(x).

7.8.4 More on the factorization of xp
m − x

We can now obtain further information on the factorization of xq −x. In view of Theorem 7.18,
we now set q = pm.

We first show that the set of roots of a minimal polynomial gi(x) ∈ Fp[x] is closed under the
operation of taking the pth power. This follows from the curious but important fact that over a
field F of characteristic p, taking the pth power is a linear operation. For example, when p = 2,
squaring is linear because

(α+ β)2 = α2 + αβ + αβ + β2 = α2 + β2.

More generally, over any field F,

(α+ β)p =

p∑

j=0

(
p

j

)
αjβp−j ,

where
(
p
j

)
αjβp−j denotes the sum of

(
p
j

)
terms equal to αjβp−j . If F has characteristic p, then

the integer
(
p
j

)
= p!/(j!)((n − j)!) may be reduced mod p. Now p! contains a factor of p, but

for 1 ≤ j ≤ p − 1, j! and (n − j)! do not contain a factor of p. Therefore
(
p
j

)
= 0 mod p for

1 ≤ j ≤ p− 1, and
(α+ β)p = αp + βp.

By taking the pth power n times, we may extend this result as follows:

Lemma 7.21 (Linearity of taking the pnth power) Over any field F of characteristic p,
for any n ≥ 1, taking the pnth power is linear; i.e.,

(α+ β)p
n

= αp
n

+ βp
n
.
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Note that if F has q = pm elements, then βp
m

= β for all β ∈ F, so this lemma becomes
repetitive for n ≥ m.

Exercise 15. Using this lemma, prove that if f(x) =
∑m

i=0 fix
i, then

fp
n
(x) = (f0 + f1x+ f2x

2 + · · ·+ fmx
m)p

n
= fp

n

0 + fp
n

1 xp
n

+ fp
n

2 x2pn + · · ·+ fp
n

m xmp
n
.

This result yields a useful test for whether a polynomial f(x) ∈ F[x] is in Fp[x] or not, and a
useful formula in case it is:

Lemma 7.22 (Prime subfield polynomials) For any field F of characteristic p and any
f(x) ∈ F[x], fp(x) = f(xp) if and only if f(x) ∈ Fp[x]; i.e., if and only if all coefficients fi
are in the prime subfield Fp ⊆ F.

Proof. By Exercise 14, we have

fp(x) = (f0 + f1x+ f2x
2 + · · ·+ fnx

n)p = fp0 + fp1x
p + fp2x

2p + · · ·+ fpnx
np.

Now the elements of F that are in Fp are precisely the p roots of the polynomial xp − x; thus
βp = β if and only if β ∈ Fp. Thus the right side of this equation simplifies to f(xp) if and only
if fi ∈ Fp for all i.

Exercise 16. Prove that a positive integer n is prime if and only if (x− a)n = xn − a mod n
for every integer a that is relatively prime to n.3

Using Lemma 7.22, we now show that the roots of a minimal polynomial are a cyclotomic coset
of the form {β, βp, βp2

, . . .}:

Theorem 7.23 (Roots of minimal polynomials) Let g(x) be a minimal polynomial of a fi-
nite field F with pm elements. Then the roots of g(x) are a set of the form {β, βp, βp2

, . . . , βp
n−1},

where n is a divisor of m. Moreover, g(x) divides xp
n − x.

Proof. Let β be any root of g(x). Since g(x) ∈ Fp[x], Lemma 7.22 shows that g(xp) = gp(x).

Therefore g(βp) = gp(β) = 0. Thus βp is also a root of g(x). Iterating, βp
2
, βp

3
, . . . , βp

i
, . . . are

all roots of g(x). Because F is finite, these roots cannot all be distinct. Therefore let n be the

smallest integer such that βp
n

= β. Thus βp
j 6= β for 1 ≤ j < n. This implies that βp

j 6= βp
j+k

for 0 ≤ j < n, 1 ≤ k < n; i.e., all elements of the set {β, βp, βp2
, . . . , βp

n−1} are distinct. Thus
β, βp, βp

2
, . . . is a cyclic sequence and βp

j
= β if and only if n is a divisor of j. Since βp

m
= β,

we see that n must divide m.

Finally, we show that these roots are all of the roots of g(x); i.e., deg g(x) = n and

g(x) =

n−1∏

i=0

(x− βpi).

The right side of this equation is a monic polynomial h(x) ∈ F[x] of degree n. Since the roots
of h(x) are roots of g(x), h(x) must divide g(x) in F[x]. Now, using Lemma 7.22, we can prove

3This is the basis of the polynomial-time primality test of [Agrawal, Kayal and Saxena, 2002].
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that h(x) is actually a polynomial in Fp[x], because

hp(x) =

n−1∏

i=0

(x− βpi)p =

n−1∏

i=0

(xp − βpi+1
) =

n−1∏

i=0

(xp − βpi) = h(xp),

where we use the linearity of taking the pth power and the fact that βp
n

= β. Therefore, since
g(x) has no factors in Fp[x], g(x) must actually be equal to h(x).

Finally, since the roots of g(x) all satisfy βp
n

= β, they are all roots of the polynomial xp
n−x,

which implies that g(x) divides xp
n − x.

This theorem has some important implications. First, the degree n of a minimal polynomial
g(x) of a finite field F with pm elements must be a divisor of m. Second, the subfield Gβ of F
generated by a root β of g(x) must have pn elements. Third, xp

n − x divides xp
m − x, since the

elements of Gβ are all the roots of xp
n − x and are also roots of xp

m − x.
Conversely, let g(x) be any prime polynomial in Fp[x] of degree n. Then there is a finite field

generated by g(x) with pn elements. This proves that g(x) divides xp
n−x, and thus g(x) divides

xp
m − x for every multiple m of n. Thus the divisors of xp

m − x include every prime polynomial
in Fp[x] whose degree n divides m.

Moreover, xp
m −x has no repeated factors. We proved this earlier assuming the existence of a

field F with pm elements; however, we desire a proof that does not make this assumption. The
following exercise yields such a proof.

Exercise 17 (xp
m−x has no repeated factors). The formal derivative of a degree-n polynomial

f(x) ∈ Fp[x] is defined as

f ′(x) =

n∑

j=1

(j mod p)fjx
j−1

(a) Show that if f(x) = g(x)h(x), then f ′(x) = g′(x)h(x) + g(x)h′(x).

(b) Show that an prime polynomial g(x) is a repeated divisor of f(x) if and only if g(x) is a
divisor of both f(x) and f ′(x).

(c) Show that xp
m − x has no repeated prime factors over Fp.

Now we can conclude our discussion of the factorization of xp
m − x as follows:

Theorem 7.24 (Factors of xp
m − x) The polynomial xp

m−x factors over Fp into the product
of the prime polynomials in Fp[x] whose degrees divide m, with no repetitions.

For example, over F2, we have

x2 + x = x(x+ 1);

x4 + x = x(x+ 1)(x2 + x+ 1);

x8 + x = x(x+ 1)(x3 + x2 + 1)(x3 + x+ 1);

x16 + x = x(x+ 1)(x2 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1)(x4 + x+ 1).

Exercise 18. Find all prime polynomials g(x) ∈ F3[x] of degree 1 and 2 over the ternary field
F3. Show that the product of these polynomials is x9 − x = x9 + 2x. Explain, with reference to
F9.
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7.9 Finite fields Fpm exist for all prime p and m ≥ 1

At last we can prove that for every prime p and positive integerm there exists a prime polynomial
g(x) ∈ Fp[x] of degree m. This will prove the existence of a finite field Fg(x) with pm elements.

Using the factorization of Theorem 7.24, we will show that there do not exist enough prime
polynomials of degree less than m that their product could have degree pm.

Let N(n) denote the number of prime polynomials over Fp of degree n. The product of these
polynomials has degree nN(n). Since xp

m−x is the product of these polynomials for all divisors
n of m, and there are no repeated factors, its degree pm is equal to

pm =
∑

n:n|m
nN(n) (7.8)

This formula may be solved recursively for each N(m), starting with N(1) = p.

Exercise 19. Calculate N(m) for p = 2 for m = 1 to 10. Check your results against those
stated in Section 7.5.4.

Now we are in a position to prove the desired theorem:

Theorem 7.25 (Existence of prime polynomials) Let N(m) be the number of prime poly-
nomials in Fp[x] of degree m, which is given recursively by (7.8). For every prime p and positive
integer m, N(m) > 0.

Proof. Note first that nN(n) ≤ pn. Thus

pm ≤ mN(m) +
∑

n<m:n|m
pn ≤ mN(m) + (m/2)pm/2,

where we have upperbounded the number of terms in the sum by m/2 and upperbounded each
term by pm/2, since the largest divisor of m other than m is at most m/2. Thus

mN(m) ≥ pm − (m/2)pm/2 = pm/2(pm/2 −m/2).

The quantity pm/2 −m/2 is positive for p = 2,m = 2, and is increasing in both p and m. Thus
mN(m) is positive for all prime p and all m ≥ 2. Moreover N(1) = p.

Since a finite field Fg(x) with pm elements can be constructed from any prime polynomial
g(x) ∈ Fp[x] of degree m, this implies:

Theorem 7.26 (Existence of finite fields) For every prime p and positive integer m, there
exists a finite field with pm elements.

Moreover, for each n that divides m, there exists a unique subfield G with pn elements, namely
the roots of the polynomial xp

n − x:

Theorem 7.27 (Existence of finite subfields) Every finite field with pm elements has a sub-
field with pn elements for each positive integer n that divides m.
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In summary, the factorization of xp
m − x into minimal polynomials partitions the elements of

Fpm into cyclotomic cosets whose properties are determined by their minimal polynomials. The
roots of g(x) have multiplicative order k if g(x) divides xk − 1 and does not divide xj − 1 for
j < k. Moreover, the roots of g(x) are elements of the subfield with pn elements if and only if
g(x) divides xp

n − x, or equivalently if their order k divides pn − 1.

Example 3 (cont.) Over F2, the polynomial x16 + x factors as follows:

x16 + x = x(x+ 1)(x2 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1)(x4 + x+ 1).

Moreover, x3 +1 = (x+1)(x2 +x+1) and x5 +1 = (x+1)(x4 +x3 +x2 +x+1). The primitive
elements are thus the roots of x4 + x+ 1 and x4 + x3 + 1. If we choose a root of x4 + x+ 1 as
α, then F16 = {0, 1, α, . . . , α14} partitions into cyclotomic cosets as follows:

• One zero element (0), minimal polynomial x;

• One element of order 1 (1), minimal polynomial x+ 1;

• Two elements of order 3 (α5, α10), minimal polynomial x2 + x+ 1;

• Four elements of order 5 (α3, α6, α9, α12), minimal polynomial x4 + x3 + x2 + x+ 1;

• Four elements of order 15 (α, α2, α4, α8), minimal polynomial x4 + x+ 1;

• Four elements of order 15 (α7, α14, α13, α11), minimal polynomial x4 + x3 + 1.

F16 has a prime subfield F2 consisting of the elements whose minimal polynomials divide x2 +x,
namely 0 and 1. It also has a subfield F4 consisting of the elements whose minimal polynomials
divide x4 + x, namely {0, 1, α5, α10}. Alternatively, F∗4 consists of the three elements of F∗16

whose multiplicative orders divide 3.

Exercise 20 (construction of F32).

(a) Find the prime polynomials in F2[x] of degree 5, and determine which have primitive roots.

(b) For some minimal polynomial g(x) with a primitive root α, construct a field Fg(x) with 32
elements. Give a table with the elements partitioned into cyclotomic cosets as above. Specify the
minimal polynomial and the multiplicative order of each nonzero element. Identify the subfields
of Fg(x).

(c) Show how to do multiplication and division in Fg(x) using this “log table.” Discuss the
rules for multiplication and division in Fg(x) when one of the field elements involved is the zero
element 0 ∈ Fg(x).

(d) [Optional] If you know something about maximum-length shift-register (MLSR) sequences,
show that there exists a correspondence between the “log table” given above and a certain MLSR
sequence of length 31.


